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a b s t r a c t

This study addresses the entropy generation in heat conduction, accompanied by melting/solidification.
The energy and entropy equations for one-dimensional transient thermal analysis with associated bound-
ary and initial conditions are solved numerically using a fixed grid numerical model with the finite control
volume approach following the Thomas algorithm. On the other hand, the dimensionless thermal con-
vailable online 13 February 2009
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ductivity, K, is calculated by harmonic mean method at the control surface. The numerical results are
then verified by testing the resulting predictions for independence of the grid size, time-step and other
parameters. Proper trends and a good agreement between the results of theoretical modeling and physi-
cal reality for the solidification/melting process are obtained. A parametric study with various associated
parameters is performed and results are illustrated.
hase change
eat conduction

. Introduction

Minimization of entropy generation, without sacrificing ener-
etic efficiency, is a key towards optimal design of phase-change
rocesses. During a phase-change process, energy is transferred to
ne side of the material and subsequently is removed from the
ther side of material. Depending on the energy input the sub-
trate material can undergo multiple changes in phase over the
hermal cycle. The second law of thermodynamics imposes strict
imitations on the nature of energy flow under such conditions.
ctually, the entropy generation turns out to be a key parameter

n achieving the upper limit of thermodynamics performance of
hase-change processes. Therefore, an entropy analysis of such pro-
esses may become fruitful for optimizing the process parameters,
hich accordingly provide a more stringent process control and

educe the associated costs.
Problems of heat transfer accompanied by melting or solidifica-

ion (the Stefan problems) are of considerable interest in many areas
f science and technology. Main efforts in studies of these problems
ave been devoted to analysis of the temperature/concentration
elds and the interface motion and shape. In the last decade there

ave been attempts to reconsider phase-change problems in the
eneral framework of irreversible thermodynamics. These works
nable one to control systematically various physical assumptions
sed in specific models and also bring attention to such aspects of
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the phase-change processes as the rate of entropy production both
in the bulk and at the phase-change front.

Phase-change processes have received much attention in recent
years because of their wide range of applications, and commonly
encountered in a large variety of thermal engineering applications
ranging from the freezing of water in pipes and heat exchangers to
solidification of castings and crystallization from liquid phase. In
addition, freezing and thawing of water within foodstuff is of great
importance in food processing operations, which are often carried
out by placing objects in an air stream.

Freezing, melting, evaporation, and structural changes of a mate-
rial are characterized by discontinuous changes in thermodynamic
properties at some definite temperatures and pressures with-
out change of chemical composition. These transitions are thus
called changes in state of aggregation or phase-changes as distinct
from chemical changes. Underestimating the heat capacity usu-
ally results in unsatisfactory operation, due to the impossibility
of reaching the desired operating conditions. On the other hand,
overestimation of the capacity results in excess plant capacity and
unnecessarily high initial investment and amortization cost. That
is why an accurate prediction of the transient heat transfer dur-
ing such phase-changes is of paramount importance, since it is
inescapably involved in establishing the system capacity.

Many solution methods have been developed handling the
phase-change problems, depending on the problem characteristics

and geometry. Many of these methods are numerical ones. Obtain-
ing analytical solutions are very difficult because of the nonlinear
characteristics of the phase-change problems. There are few exact
solutions about moving boundary problems for only some idealized
situations, subject to simple boundary and initial conditions [1]. An

http://www.sciencedirect.com/science/journal/00406031
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Nomenclature

Bi Biot number, hl/ks

Cp specific heat (J kg−1 K−1)
Fo Fourier number, ˛t/l2

h heat transfer coefficient (W m−2 K−1)
kl thermal conductivity of liquid (W m−1 K−1)
ks thermal conductivity of solid (W m−1 K−1)
l distance of plates (m)
t time (s)
Tl temperature of liquid phase (K)
Tm melting temperature (K)
Ts temperature of solid phase (K)
T∞ ambient temperature (K)
x distance (m)
X x/l

Greek letters
˛l thermal diffusivity of liquid phase (m2 s−1)
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The thermophysical properties of PCM are independent of tem-
perature, but the properties of the PCM are different in the solid
and liquid phases. Thermophysical properties of the PCM associated
with the system can be found in Table 1.

Table 1
Thermophysical properties of water and geometrical parameters of PCM.

Parameter Symbol Value Unit

Length of enclosure L 0.1 m
Temperature difference �T = Tm − T∞ 10 and 20 K
Biot number Bi 10, 20 and 50 –
Phase-change temperature Tm 273.15 K
Thermal conductivity of solid PCM ks 2.200 W m−1 K−1

Thermal conductivity of liquid PCM kl 0.561 W m−1 K−1
˛s thermal diffusivity of solid phase (m2 s−1)
� density (kg m−3)

nalytical solution for the temporal location of moving solid–liquid
nterface of a phase-change process, occurring in parallel plate
hannels has been presented by Sahin and Dincer [2].

For the situations for which the exact solutions are not avail-
ble; approximate, semi-analytical and numerical methods have
een used to solve the phase-change problems. These methods are
xplained in [3] with some examples, and analyzed in detail in the
tate-of-art review about the subject [4]. On the other hand, Crank
5] presents an elaborate collection of numerical methods used for
hese problems.

Fixed grid solutions for phase-change problems remove the need
o satisfy conditions at the phase-change front and can be easily
xtended to multi dimensional problems. The two most important
nd widely used methods are enthalpy methods and temperature-
ased equivalent heat capacity methods. Enthalpy methods [6] are
exible and can handle phase-change problems occurring both at
single temperature and over a temperature range. The drawback
f this method is that although the predicted temperature distri-
utions and the melting fronts are reasonable, the predicted time
istory of the temperature at a typical grid point may have some
scillations. The temperature-based fixed grid methods [7,8] have
o such time history problems and are more convenient with con-

ugate problems involving an adjacent wall.
Second law formulation was presented with predictive and

orrective capabilities for the improvement of phase-change pre-
ictions in solid–liquid systems by Naterer [9]. Naterer also applied
he downward concavity and compatibility properties of entropy
n a discrete entropy based stability analysis. Naphon [10] the-
retically studied the heat transfer characteristics and entropy
eneration of the double pass flat plate solar air heater with longi-
udinal fins. Similar fin geometry was studied in terms of the effect
f entropy generation by Dağtekin et al. [11]. They concluded that
oth the entropy generation and the pumping power to heat trans-
er ratio increase in case of triangular fin as the fin angle is increased.
ılbas and Pakdemirli [12] investigated entropy generation in a cir-
ular pipe due to the flow of a non-Newtonian Fluid with variable
iscosity. A latent thermal energy system integrated with solar air

eating system was numerically modeled by Kousksou et al. [13].
nergy and exergy analysis were applied to study and optimize the
roposed system in their study.

The objectives of this paper are to present a detailed analysis
f entropy generation of a phase-change process in a parallel plate
Fig. 1. Phase-change process in a parallel plate channel.

channel using a fixed grid numerical model, including associated
parametric study.

2. Problem statement

A one-dimensional rectangular enclosure of length L, filling a
phase-change material (PCM) of the same size, is exposed to heat
convection occurring from the flow of the cold fluid over its one
wall. A constant heat flux, q, which would control of freezing pro-
cess, is imposed on the other side wall of the enclosure illustrated in
Fig. 1. The whole system is initially kept at the slightly over phase-
change temperature, Tm. Namely, the system is at liquid phase
initially.

The following assumptions are made for the analysis:

a) The physical properties are independent of the temperature and
no density change occurs during the phase-change process.

b) The thicknesses of the plates are small and conductivity of their
material is high so that the temperature drop across the plates
can be neglected.

c) One side of the channel of width l is exposed to a cold ambi-
ent at time t > 0 and convection heat transfer takes place with
a constant heat transfer coefficient, h. Thus, the solidification
of the liquid with uniform initial temperature starts within the
channel.

d) A constant heat flux, q, which would control the freezing process,
is imposed on the other side of the channel.
Density of solid �s 916.8 kg m−3

Density of liquid PCM �l 999.8 kg m−3

Specific heat of solid PCM cps 2040 J kg−1 K−1

Specific heat of liquid PCM cpl 4217 J kg−1 K−1

Latent heat of fusion �H 333, 500 J kg−1
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. Analysis

The governing equation for energy is well known as one-
imensional heat conduction equation:

∂(C�)
∂Fo

= ∂

∂X

(
K

∂�

∂X

)
(1)

As the initial temperature of the system is considered to be the
ame or close to the phase-change temperature, the natural con-
ection effect around the tube and fins can be neglected. The heat
onduction in the PCM is described by a temperature transform-
ng method using a fixed grid numerical model [7,8]. This model
ssumes that solidification process occurs over a range of phase-
hange temperature from Tm − ıTm to Tm + ıTm, but it can also be
uccessfully used to simulate solidification process occurring at a
ingle temperature by taking a small range of phase-change tem-
erature, 2ıTm. The dimensionless energy equation for the PCM is
ritten as

∂(C�)
∂Fo

= ˛l

˛f

(
1
R

∂

∂R

(
KR

∂�

∂R

)
+ ∂

∂X

(
K

∂�

∂X

))
− ∂S

∂Fo
(2)

here

= C(�) =

⎧⎪⎨
⎪⎩

Csl � < −ı�m Solid phase(
1
2

(1 + Csl) + 1
2Ste ı�m

)
−ı�m ≤ � ≤ ı�m Mushy phase

1 � > ı�m Liquid phase

(3)

= S(�) =

⎧⎪⎨
⎪⎩

Cslı�m � < −ı�m Solid phase(
1
2

ı�m(1 + Csl) + 1
2Ste

)
−ı�m ≤ � ≤ ı�m Mushy phase

Cslı�m + 1
Ste

� > ı�m Liquid phase

(4)

= K(�) =

⎧⎨
⎩Ksl +

Ksl � < −ı�m Solid phase

(1 − Ksl)(T + ıT∗)
2ıT∗ −ı�m ≤ � ≤ ı�m Mushy phase

1 � > ı�m Liquid phase

(5)

The temperature distribution inside the solution domain can be
alculated by solving the energy equations defined by Eqs. (1)–(5).
he solution procedure used for solving these energy equation are
he control volume approach described in [14]. On the other hand,
he dimensionless thermal conductivity, K, is calculated by har-

onic mean method at the control surface. Thomas algorithm is
sed for solving the discretization equations of energy equation.

Since energy equation for the PCM is a non-linear heat conduc-
ion equation, iterations are needed during each time step. For a
iven time step, convergence is declared at the (k + 1)th iteration
hen |�k+1

i,j
− �k

i,j
| ≤ 10−6. The numerical results are then verified by

esting the resulting predictions for independence of the grid size,
ime-step and other parameters. The grid size used for the solution
as 200 with a time step �� = 0.001.

.1. Entropy generation

After derivation of temperature change, now we can obtain a for-
ulation for entropy generation rate. We regard the small element

x as a closed thermodynamic system subjected to energy transfer
s shown in Fig. 2.
The element size is small enough so that the thermodynamic
tate of the fluid inside the element may be regarded as uniform
independent of position). However, the thermodynamic state of
he element may be change with time. The fluid is in local thermo-
ynamic equilibrium.
Fig. 2. Small element dx that exposed to heat flux in x direction.

Based on the above model, the entropy generation rate per unit
volume S′′′

gen = [W m−3 K−1] may be estimated writing the second
law of thermodynamics for dx as a closed system;

Ṡ′′′
gen dx = q + (∂q/∂x) dx

T + (∂T/∂x) dx
− q

T
+ �

∂s

∂t
dx (6)

In this expression the first two terms account for the entropy trans-
fer associated with heat transfer, and the last term represents the
rate of entropy accumulation in the element. Dividing Eq. (6) by dx,
the local entropy generation becomes;

Ṡ′′′
gen = 1

T

∂q

∂x
− q

T2

∂T

∂x
+ �

∂s

∂t
(7)

And if ∂s = ∂u/T , where u is internal energy, inside the element dx

�
∂s

∂t
= �

T

∂u

∂t
(8)

From the first law of thermodynamics, written for one point in the
convective medium, � (∂u/∂t) = −∂q/∂x, so we can write down Eq.
(8) as

�
∂s

∂t
= − 1

T

∂q

∂x
(9)

Combining Eq. (8) with Eq. (9) we obtain entropy generation as

Ṡ′′′
gen = − q

T2

∂T

∂x
(10)

Finally, if the Fourier law of heat conduction for an isotropic
medium applies, q = −k (∂T/∂x) the volumetric rate of entropy gen-
eration becomes

Ṡ′′′
gen = k

T2

(
∂T

∂x

)2

(11)

4. Results and discussion

One dimensional phase-change problem of water with the
parameters given in Table 1 is investigated numerically. The rela-
tion between solidification fronts, S and dimensionless time, Fo is
obtained as illustrated in Fig. 3. This figure shows that solidifica-
tion fronts increase, following a concave down curve, with time.
This growing of solidification fronts is continuous until it reaches

1, because we present it as a dimensionless parameter earlier. And
also, as expected, the duration of complete solidification of channel
increases while the heat flux on the hot site of channel is increased.
This is because; the rate of solidification fronts is inversely propor-
tional to the heat flux.
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Fig. 5. Time variation of the solidification fronts.
ig. 3. Time variation of the solidification fronts for Bi = 10 and Tm − T∞ = 10 K.

In Fig. 4, the temperature distribution is illustrated at different
imensionless time Fo. Temperature is negative at solid phase side
nd it is increasing towards the liquid phase side, as a result of
eat flux on the right hand side. It reaches the melting tempera-
ure of “Tm = 0 ◦C” at inter-phase following a linear grade in solid
hase, while following an increasing rate curve at liquid phase. At
he same time the interface moving towards the positive x direction
ith time, while surface temperature of liquid side is decreasing.

hese results are based on the Biot number, Bi = 10 and temperature
ifference, �T = 10 K as shown in the figure.

The relation between solidification fronts, S and dimensionless
ime, Fo with different Biot number, Bi and temperature difference,

T is given in Fig. 5. At constant temperature difference of �T = 10 K,
he solidification fronts is increasing with time as a concave down
urve. And the rising rate of this curve is escalating when increasing
iot number. On the other hand, at the constant Biot number the
olidification fronts increases while the temperature difference �T
ncreases. In short, the solidification takes place faster when envi-
onment temperature T∞ at cold side of channel decreased. And also
he same effect can be seen when convection heat transfer coef-
cient h is increased and/or thermal conductivity k is decreased.
ecause, the convection is domain heat transfer type in the cold

ide of channel, while conduction is for hot side.

In Fig. 6, the relation between entropy generation, Sgen and
imensionless time, Fo, with different heat flux, is illustrated.
ntropy generation increases abruptly at the beginning and makes

ig. 4. Temperature distrubition with axial direction for Bi = 10 and Tm − T∞ = 10 K.
Fig. 6. The entropy generation with time for Bi = 10 and Tm − T∞ = 10 K.

peak at Fo = 0.5 which is interphase point as it can be seen from the
previous figures. By considering Eq. (10), it is seen that the volu-
metric rate of entropy generation depends on both temperature
gradient and heat transfer rate. At the final stages of solidifica-

tion process, the solidification front approaches the right surface
with a decreasing velocity, and the phase-change process is then
completed. The heat transfer mechanism reverts into steady-state
process at this stage, and consequently, the heat flux on left side
decreases to the value of the right side one. This situation explains

Fig. 7. The entropy generation with time for different Biot number (Bi) and temper-
ature difference (Tm − T∞).
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hy the entropy generation suddenly decreases to its lowest value
hen the solidification process is almost completed. After that
oint, it starts decreasing slowly until the solidification process
lmost finishes completely and then it becomes zero suddenly.
ntropy generation rises with increasing heat flux on the right side
f channel and it is not reaching to zero at the right side of channel
n the case of applying a non-zero heat flux.

Entropy generation curves with respect to dimensionless time,
ased on different Biot number and temperature difference, are

llustrated in Fig. 7. At constant temperature difference of �T = 10 or
0 K, entropy generation rises when Biot number is increased. And
imilarly, at constant Biot number, entropy generation is directly
roportional to temperature difference.

. Conclusions

A comprehensive thermodynamic analysis, incorporating the
ntropy generation in heat conduction, of a parallel plate channel
hase-change flow accompanied by melting/solidification has been
erformed. The energy and entropy equations for one-dimensional
ransient thermal analysis with associated boundary and initial
onditions have been solved numerically using a fixed grid numer-
cal model with the finite control volume approach following the
homas algorithm. This thermodynamic analysis of one dimen-
ional flow allows several conclusions to be drawn. This information
hould assist efforts to understand the thermodynamic losses of one
imensional parallel plate channel phase-change flow and conse-
uently to improve it.

The solidification fronts increase with time until it reaches 1,

s it is a dimensionless parameter. Also the duration of complete
olidification of channel increases while the heat flux on the hot
ite of the channel is increased.

The solidification takes place faster when environment temper-
ture T∞ at cold side of channel decreased, and the same effect is

[
[
[

[

a Acta 489 (2009) 70–74

apparent when convection heat transfer coefficient h is increased
and/or thermal conductivity k is decreased.

Entropy generation increases rapidly at the beginning and
makes peak at inter-phase point. After that point, it is start
decreasing slowly until the solidification process almost finishes
completely and then it becomes zero suddenly. This is because
entropy generation is higher in the solid part than the liquid part.
Entropy generation rises with increasing heat flux on the right side
of the channel and it is not reaching to zero on the right side of the
channel in the case of applying a non-zero heat flux.

Acknowledgements

The authors acknowledge the support provided by their univer-
sities and the Natural Sciences and Engineering Research Council
of Canada in Canada.

References

[1] H.S. Carslaw, J.C. Jaeger, Conduction of Heat in Solids, 2nd ed., Clearendon Press,
London, 1959.

[2] A.Z. Sahin, I. Dincer, Int. J. Energy Res. 24 (2000) 1029–1039.
[3] M.N. Ozisik, Heat Conduction, John Wiley, 1980.
[4] S. Fukusako, N. Seki, Fundamental aspects of analytical and numerical methods

on freezing and melting heat transfer problems, Annu. Rev. Numer. Fluid Mech.
Heat Transfer 1 (1986), Ch 7.

[5] J. Crank, Free and Moving Boundary Problems, Clearendon Press, Oxford, 1984.
[6] Y. Cao, A. Faghri, W.S. Chang, Int. J. Heat Mass Transfer 32 (7) (1989) 1289–1298.
[7] J.S. Hsiao, B.T.F. Chung, ASME Paper No.84-Ht-2 (1984).
[8] Y. Cao, A. Faghri, J. Heat Transfer 112 (1990) 812–816.
[9] G.F. Naterer, Numer. Heat Transfer B 37 (2000) 393–414.
10] P. Napson, Renew. Energy 30 (2005) 1345–1357.
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